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Implicitization Matrices in the Style of
Sylvester with the Order of Bézout

Eng-Wee Chionh, Ming Zhang, and Ronald Goldman

Abstract. Resultants are the standard tool used to compute the im-
plicit equation of a rational curve or surface. Here we present a new way
to compute the implicit equation of a rational curve by taking the deter-
minant of a matrix having the style of the Sylvester resultant but the size
of the Bézout resultant. Thus the new method has the advantages of both
resultant schemes, representing the implicit equation as the determinant of
a matrix with simple linear entries and lots of zeros just like the Sylvester
resultant, but with the same small size as the Bézout resultant.

§1. Implicitization and Resultants

In Computer Aided Geometric Design (CAGD), curves and surfaces have two
standard representations: parametric and implicit. The parametric represen-
tation is convenient for rendering curves and surfaces, whereas the implicit
representation is useful for checking whether or not a point lies on a curve
or surface. In the ideal situation, both representations are available. Given
the parametric form of a curve or surface, one basic problem in CAGD is im-
plicitization — that is, to find the implicit representation. Resultants are an
effective tool for solving this problem for rational curves and surfaces [4,5].

Resultants are polynomial expressions in the coefficients of a set of poly-
nomials; the vanishing of these expressions signals that the set of polynomials
have a common root. For two univariate polynomials, there are two standard
resultant formulations: Sylvester’s resultant and Bézout’s resultant. Given
two degree n polynomials

n n
f=Zaitl: g=Zbitl)
i=0 i=0
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the Sylvester resultant is the determinant of the 2n x 2n matrix

- ag bo .
ax b1 ao bo
: : a b
g l(f ) Qp-1 bn—-l : ap bO
e an by, Gn_1 bn_y a) b
an b, :
Qpn-1 bn—l
| an b, |

Thus, the Sylvester resultant is just the determinant of the coefficient matrix
of the polynomials f,g,---,t"1f,t""1g [6,9]. The Bézout resultant of f and
g is the determinant of the n x n coefficient matrix Bez(f, g), where Bez(f, g)
is defined by

’f(t) 9(t)
_f(ia___gt_(oi)_=[1 t"=1]. Bez(f,g)-[1 -+ o™ 1]7.

Explicit entry formulas for the Bézout resultant and fast computational algo-
rithms for these entries can be found in [4,1].

The Sylvester and Bézout resultants each have certain advantages and
disadvantages. The Sylvester resultant is sparse and all the nonzero entries
of the Sylvester resultant come directly from the coefficients of f or g. The
entries of the Bézout resultant are more complicated. However, to calculate
the Sylvester resultant, a large determinant has to be computed, whereas the
Bézout resultant matrix is much more compact.

To see why resultants arise naturally in implicitization, consider a rational
curve

_a) v o
w(t) w(t)
where z(t), y(t),w(t) are polynomials. To obtain the implicit representation
F(X,Y) = 0 for curve (1), introduce two auxiliary polynomials (in ¢)

Y - wl(t) - y(t). (@)

By definition, the resultant of these two polynomials vanishes if and only if
they have a common root, i.e. if and only if the point (X,Y’) satisfies the two
equations

X - w(t) —=z(t),

X -w(t)—z(t) =0, Y -w(t) —y(t) =0,

for some value of ¢t. Thus, (X,Y) makes the resultant of X - w(t) — z(t),
Y - w(t) — y(t) vanish if and only if (X,Y) is on curve (1). So setting the
resultant to zero yields the implicit equation of the parametric curve.
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But which form of the resultant should one use? The Sylvester resultant
has simple linear entries and lots of zeros, but to calculate the Sylvester re-
sultant a large determinant has to be computed. The Bézout resultant has
a more compact form, but the entries are much more complicated than the
entries of the Sylvester resultant. Here we present a new way to compute the
implicit equation of a rational curve by taking the determinant of a matrix
having the style of the Sylvester resultant but the size of the Bézout resultant.
Thus the new method has the advantages of both resultant schemes. That
is, the new approach represents the implicit equation as the determinant of
a matrix with simple linear entries and lots of zeros just like the Sylvester
resultant, but the matrix has the same small size as the Bézout resultant.

Surfaces are beyond the scope of this work, but we hope to develop similar
techniques for rational surfaces in a future paper [2].

§2. Implicitization from Moving Lines

In this section, we consider first rational curves of even degree. We begin
by reviewing the concept of a moving line that follows a rational curve (7,8},
and we show that there are always at least two moving lines of degree m
that follow a rational curve of degree 2m. The m x m Bézout determinant
of these two moving lines has been used by previous authors to establish the
efficacy of implicitization by the method of moving conics [3,8]. Here we
prove that the 2m x 2m Sylvester determinant of these two moving lines is an
implicit expression for the rational curve if and only if there are no moving
lines of degree < m that follow the curve. This construction generates an
implicitization matrix in the style of Sylvester with the order of Bézout. At
the end of this section, we develop similar results for rational curves of odd
degree.

2.1 Even degree rational curves

A rational curve of degree 2m can be written as (z(t) : y(t) : w(t)), where

z(t) = ait!,  y)=) bt, wt)=) et 3)
=0 =0 =0

and ged(z(t), y(t), w(t)) = 1. We can think of a rational curve as the track of
a moving point.

Analogously, a moving line of degree d is defined by an implicit equation
of the form

(Ao.’L‘ + Boy + Co’w) +-+ (Adm + Bay + de)td =0, (4)

where the coefficients Ag, By, Co, -, A4, B4, Cq are constants. We say that
the moving line (4) follows the rational curve (3) if and only if

(Aoz(t) + Boy(t) + Cow(t)) + - - - + (Aaz(t) + Bay(t) + Caw(t))t* = 0. (5)
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For example, the equations
z-w(t)—w-z(t) =0, y-wlt)-w- -y{) =0,
or equivalently,
X -wit)y—z(t)=0, Y- w(t)-yl)=0

are two moving lines of degree 2m that follow the rational curve (3). Thus
the standard way to find the implicit equation of the rational curve (3) is to
compute the resultant of these two moving lines of degree 2m that follow the
curve. To simplify the determinant that represents the implicit equation, we
are going to take the resultant of two moving lines of degree m that follow the
curve.

By equating the coefficients of the powers of ¢ in (5) to zero, we obtain
2m + d + 1 equations in 3d + 3 unknowns. The 3d + 3 unknowns Ag, By, Co,
-+, Ag, B4, Cy of the moving line (4) can be found by solving the (2m +d +
1) x (3d + 3) linear system

Coeff(x(t)a y(t)) w(t)’ ] "L‘(t)td) y(t)tdv w(t)td)
-[AO Bo Bo Ad Bd Cd]=0,

where “Coeff” stands for the matrix whose columns are the coefficients of
the given polynomials. When d = m, the dimension of the linear system is
(3m+1) x (3m+3). Consequently, there are at least two linearly independent
solutions p(z,y, w;t) and q(z,y, w;t).

The 2m x 2m Sylvester matrix Syl(p, ¢) obtained by eliminating ¢ from
p and g can be written as

Syl(p,q) = Coeff(p, g, pt, gqt, ---, pt™7!, qt™ 1),

Theorem 1. |Syl(p,q)| = 0 is the implicit equation of the rational curve (3)
when there are no moving lines of degree < m that follow curve (3).

Proof: Since the implicit equation of a rational curve of degree 2m is repre-
sented by an irreducible polynomial of degree 2m (8], we need only establish
three facts:

1) |Syl(p,q)| £0,
2) |Syl(p,q)| is of degree at most 2m,

3) |Syl(p, q)] vanishes on (x(t) : y(t) : w(t)).

From the properties of resultants, we know that |Syl(p,q)] = 0 if and
only if p and ¢ have a common factor g(t) of degree > 1. Since p and ¢ are of
degree 1 in x, y, w, one of g and p/g would be of degree 1 in z, y, w, i.e. a
moving line of degree < m that follows the curve. But by assumption there
are no such moving lines, so |Syl(p, ¢)| cannot vanish identically.
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Since |Syl(p, g)| is the determinant of a 2m x 2m matrix with linear entries
in z, y, w, obviously the degree of |Syl(p, ¢)| is at most 2m in z, y, w. Finally,
p(z,y,w;t) and ¢(z,y,w;t) follow the rational curve, so

p(z(to), y(to),wlto)ito) =0,  q(z(to), y(to), w(to); to) =0,

for any parameter 5. That is, the two polynomials

p(w(to), y(to), w(tO); t): q(m(to), y(tO)v w(tO); t)

have a common root ¢3. Hence, the resultant

|Syl(p(z(to), y(to), w(to);t), a(z(te),y(to), w(to);t))| = 0.
Therefore, |Syl(p, q)| vanishes on (z(t) : y(¢) : w(t)). O
In summary, we have shown that for a degree 2m rational curve, the
2m X 2m Sylvester determinant of two degree m moving lines is the implicit
equation of the curve if there are no moving lines of degree < m that follow

the curve. The existence of a moving line of degree m — 1 that follows the
curve is equivalent to the vanishing of the 3m x 3m determinant

(Coett(a(t), y(t), wlt), -, t"lz(t), t"ly(t), tmtw(D)].
This determinant is a polynomial in the coefficients of x(t),y(t), w(t) and
therefore almost never vanishes. However, in case such lower degree moving
lines do exist, the desired Sylvester determinant can be salvaged by finding
the p—basis (see Section 3).

2.2 An example
Consider the rational sextic curve
z(t) =14+22 425, y(t) =2+1% w(t)=1+t+22 4263 +1* +15.

To use the standard method to implicitize this curve, we introduce two aux-
iliary polynomials

X-w(t) - t), ¥ -w(t)-y(t).

Their Sylvester resultant is the 12 x 12 determinant

-1+X -24Y 0 0 0 0
X Y -1+4X -24Y 0 0

-2+2X 2Y X Y 0 0
2X 2Y -242X 2Y . 0 0
X Y 2X 2Y 0 0
-2 0 X Y e =14X  -24Y
X -1+Y -2 0 X Y ’
0 0 X -14Y ... 242X 2Y
0 0 0 0 2X 2Y
0 0 0 0 X Y
0 0 0 0 -2 0
0 0 0 0 X -1+Y
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where the six columns in the middle have been omitted. The Bézout resultant
is the 6 x 6 determinant [4,1]

2X-Y  —444X  4X-2Y 2X~Y —4t2v 1+X~Y
—444X 4x 2X-Y —442Y 1+ X+Y -X
4X-2Y 2X-Y —4-2Y 14X-Y  —X+4Y  2-2X-2Y
2X-Y  —4+2Y  14X-Y —X+4Y  2-2X42Y —2X )
—442Y  14X4Y  ~X44Y  2-2X+42Y  —2X42Y -X
1+X~Y -X 2-2X-2Y —~2X -X 2-2Y

On the other hand, using linear algebra, it is easy to calculate two moving
lines of degree three following this curve:

(855w + 31z — 443y) + t (77y — 778w — 231x)

+ t2(338z — 666y) + t3(25w + 333z — 25y) = 0,
(780w — 413y + 46z) + ¢ (— 748w + 82y — 196z)

+ t2(25w — 631y + 333z) + t3(303z) = 0.

The new method computes the implicit equation for this curve by taking the
6 x 6 Sylvester determinant of these two moving lines:

—443y + 31z + 855w 46z — 413y + 780w 0
—778w — 231z + 77y —748w + 82y — 196z —443y + 31z + 855w
338z — 666y 25w — 631y + 333z 778w — 231z + 77y
25w + 333z — 25y 303z 338z — 666y
0 0 25w 4+ 333z — 25y
0 0 0
0 0 0
46z — 413y + 780w 0 0

—T48w + 82y — 196z —443y + 31z + 855w 46z — 413y + 780w
26w — 631y + 333z —T78w — 231z + 77y —T748w + 82y — 196z |~
303z 338z — 666y 25w — 631y + 333z
0 25w + 333z — 25y 303z

Using Mathematica, we verified that all three methods produce the cor-
rect implicit equation for the given rational curve. Notice that the determinant
generated by the new method has the structure of the Sylvester resultant but
the order of the Bézout resultant.

2.3 Odd degree rational curves

For a rational curve of degree 2m + 1, there is always at least one non-zero
moving line of degree m and at least 3 linearly independent moving lines of
degree m + 1 that follow the curve. Therefore, there always exists a moving
line p of degree m and a moving line ¢ of degree m + 1, where ¢ is not a
multiple of p, that follow the rational curve. Suppose there is no moving line
of degree < m that follows the curve. Then by an argument similar to the
case of even degrees, the Sylvester resultant of p and g is the determinant
of a (2m + 1) x (2m + 1) matrix that represents the implicit equation of the
rational curve.
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§3. Anti-Annihilation by p—Basis

The implicitization method in Section 2 works when there are no low degree
moving lines that follow the curve. In the rare cases when there do exist low de-
gree moving lines following the curve, the Sylvester resultant used in Section 2
generally vanishes identically [7]. In order to circumvent this difficulty— that
is, to counter the annihilation effect of low degree moving lines— and show
how the desired Sylvester-style/Bézout-size determinant can still be obtained,
we need the notion of a u—basis [3].

Consider a degree n rational curve (z(t) : y(¢) : w(t)). By solving an
(n+d+1) x (3d + 3) linear system [Section 2.1], we find that the number of
linearly independent degree d moving lines that follow this curve is at least
(3d+3)—(n+d+1) = 2d + 2 — n. Thus the system always has solutions
when 3d+3 >n+d+1ord>n/2—1. Hence if p is the lowest degree in t of
all the moving lines that follow the curve, then p < |n/2]. Let p be a moving
line with the lowest degree p that follows the curve.

By our previous analysis, there are at least 2(n —p)+2—-n=n+2-2u
linearly independent moving lines of degree n — p that follow the curve. Not
all of them can be multiples of p because p can only generate n + 1 — 2u
independent moving lines of degree at most n— u: p, - -+, pt®~2*. Hence there
is a degree n — p moving line ¢ that is not a multiple of p.

The two moving lines p and ¢ that we just constructed have the following
nice property:

Theorem 2. Any degree d moving line | that follows the curve (z(t) : y(£) :
w(t)) can be written uniquely as Ap + Bq, where A is a polynomial in t of
degree at most d — u, and B is a polynomial in t of degree at most d 4+ . —n

[31.
Proof: (3] presents a proof of this result based on ideal theory. Here we

provide a simpler proof using only linear algebra. A degree d moving line can
always be written as

= 1(t)e + 1)y + L (Hw,

where I, 1, I, are polynomials in ¢ of degree at most d. It will be very

convenient in the following discussion to treat a moving line I as a vector

U= (I(t),1y(t), lw(t)). Furthermore, note that since the components of the

vector [ are polynomials, the scalar field is the field of rational functions in ¢.
Let

7= (z(t),y(t),w(t)), §= (pz(t),py(t),pw(t)), J= (qm(t)’qzj(t)’qll)(t))'

Since, by assumption, the dot products p- 7 = ¢ -7 = 0, the vector 7 is
proportional to the cross product §x ¢. That is,

L U oo
F=—<Pxg (6)

(t
v(t)

~—
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where ged(u,v) = 1. Since at least one component of 7 is of degree n and all
the components of p'x ¢ are of degree at most n, the degree of u is at least as
great as the degree of v. Moreover, by (6), u(t) divides each component of 7;
thus u(t) divides ged(z(t), y(t),w(t)) = 1. Therefore, the degree of u and the
degree of v are both zero, so

T=ApXq, (7

where ) is a constant. .

Let [ be a degree d moving line following the curve. We have I -7 =0
and - 7= 0, §-7 =0, Thus [/, p, 7 are linearly dependent. Since p and ¢ are
linearly independent, we can write

I'= A(t)5 + B(1)d, (8)

where A(t) and B(t) are rational functions in t. By (8) and (7), we have

Ixg= A g=2Ur (9)
If A(t) is a polynomial, its degree is at most d — g because all the components
of I'x G are of degree at most d +n — p and at least one component of 7 is of
degree n.
Next we show that A(¢) is indeed a polynomial. Since ged(z(t), y(t), w(t))
is equal to 1, there exist polynomials z*(¢), y*(t), w*(¢) such that

z(t)z* (1) + y(t)y" () + w(t)w’(¢) = 1.
Let 7™ = (z*(¢), y*(t),w*(t)). Applying 7-7* =1 to (9), we have
Alt) = N'x g 7. (10)

Since the components of all the vectors on the right hand side of (10) are
actually polynomials rather than rational functions in ¢, A(#) must also be a
polynomial in ¢.

The fact that B(t) is a polynomial of degree at most d + p — n can be
established similarly. .

Finally we show that A(t) and B(t) are unique for any given [. Suppose
we have

A1(t)P + B1(t)q = A2(t)p + Ba(t)d;

then (A;1(t) — A2(t))p = (Ba(t) — Bi(t))d. If Ba(t) — Bi(t) is not zero, then
it divides A;(t) — A2(t), otherwise p = - (z,y, w) is not a moving line with
minimal degree that follows the curve. But this would mean that ¢ is a
multiple of 7 hence, the moving line ¢ is a multiple of the moving line p,
which is contrary to assumption. Therefore A;(¢) = A2(t) and By (t) = By(t).
O
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The two moving lines p and ¢ in Theorem 1 are called a p—basis of the
curve (z(t) : y(t) : w(t)).

We have shown in Section 2.1 that when there are no moving lines of
degree < m following a rational curve of degree n = 2m, there will be two
moving lines of degree m following the curve and their Sylvester determinant
gives the implicit equation. Clearly these two moving lines are simply p and
g in Theorem 1 with o = m = n — pu. Theorem 1 also tells us that for
u <d<n-—p,adegree d moving line [ has the form

l=cop+cipt+--- Cd-uptd_”,

where c; are constants because [ is of the form Ap + Bg with B = 0 due to
the degree constraints on A and B. Consequently, the Sylvester determinant
of any two of these degree d moving lines vanishes as both are multiples of p;
furthermore, the number of such linearly independent degree d moving lines
is Ng = d — p + 1. In particular, when there are moving lines of degree < m
that follow the curve, we have u < m < n — y, so the Sylvester resultant of
any two degree m moving lines vanishes and there are Ny =m — p+1 > 2
degree m moving lines following the curve. Note that we can find p in terms
of N,,:

u=m-— Ny+1,
N,, =3m+ 3 — Rank of
Coeff( z(t), y(t), w(t), -+, t™z(t), t™y(t), t"w(t)).
In general then, for a degree n rational curve (z(2) : y(t) : w(t)), we can
obtain the p—basis functions p and ¢ by straightforward linear algebra. Since

p is irreducible (by degree minimality) and g is not a multiple of p, they have
no common factors. Hence their Sylvester resultant

Syl(P, Q) = Coeff (p7 pty Tty ptn_”_la q, qt) R} qt#—l )

is a matrix of size n X n whose determinant does not vanish identically. By
the divisibility and degree argument of Section 2.1, we see that this Sylvester
determinant gives an implicit expression for the rational curve (z(t) : y(t) :
w(t)) in the style of Sylvester with the order Bézout.

As an example, consider the degree n rational curve

(z(t) : y(t) s w®)) = (L: "1 14+ £7). (11)

Simple calculations reveal that p = z+ty—w and ¢ = "~ 1z —y. The Sylvester
determinant

T—w -y

lp - ptn? gl=| ¥ = (=D e —w)t !

is easily seen to represent the implicit equation of this rational curve.
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